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Research Questions
Primary:
● How adequately do large language models capture the transfer of knowledge 

about family relations in German drama texts using in-context learning (ICL)?

Adjacent:
● What is necessary to make the models understand the task and get results that 

can be evaluated automatically?
● What can ICL potentially become for the computational literary studies

○ as a subject of study?
○ as a tool/method for downstream tasks?



Introduction: What is ICL?

In-Context Learning: A frozen LLM learns to solve a specific new task at inference time (without any change to its weights) only by 
conditioning on a prompt

● Few-shot in-context learning: (1) The prompt includes examples of the intended behavior, and (2) no examples of the 
intended behavior were seen in training.

Q: What is (2 * 4) * 6? A: 48
Q: What is 17 minus 14? A: 3
Q: What is 98 plus 45?  A:

From Brown et al. (2020), supplementary material

● Zero-shot in-context learning: (1) The prompt includes no examples of the intended behavior (but it can contain other 
instructions), and (2) no examples of the intended behavior were seen in training.

Q: What is the German translation of “In no case may they be used for commercial  
purposes.”
A:

From Brown et al. (2020), supplementary material



Introduction

General advantages of ICL (Dong et al. 2023):
● Prompts written in natural language
● Training-free (no gradient updates)
● Learning from analogy

 
Advantages for Computational Literary Studies (CLS):

● No in-depth knowledge of LLMs and NLP
● Corresponds to the low-resource settings and highly individuated character of CLS-questions

Risks for CLS:
● Unreflected usage of ICL can lead to results that do not represent what the prompt/research 

questions was intending
● Difficult to interpret how the results come about



Transfer of Family Relations

Source: https://www.deviantart.com/jesuka/art/Father-687231489



Transfer of Family Relations

- Knowledge: Darth Vader is 
father of Luke

- Source of knowledge: Darth 
Vader

- Target of knowledge: Luke

Luke. I’ll never join you!

Darth Vader. If you only knew the 
power of the Dark Side. Obi-Wan 
never told you what happened to 
your father.

Luke. He told me enough! It was 
you who killed him!

Darth Vader. No. I am your father.

Source: https://www.scribd.com/document/68595175/I-Am-Your-Father



Data

● Dataset described in Andresen et al. (2022)
● 30 German theatre plays from DraCor (Fischer et al., 2019)
● Annotated for knowledge transfer of family relations (parent-of, siblings, 

spouses, uncle-of, aunt-of, etc.), source and target of knowledge
● 736,808 tokens
● 1,277 annotated passages



Task: Recognition of Family Relations in Dramatic Texts

Classification Task:

● Identify family relationship between two literary characters, given text snippet

Entailment Task:

● Re-formulation of classification task
● Does the text snippet entail that a certain family relationship exists between two 

characters?



Classification Task Example

Iphigenia.

The eldest,—he whom madness lately seiz'd,

And who is now recover'd,—is Orestes,

My brother, and the other Pylades,

His early friend and faithful confidant.

Variation 1: given character names

______(Iphigenia, Orestes)

-> Siblings(Iphigenia, Orestes)

Variation 2: character names not 
given

______(______, ______)

-> Siblings(Iphigenia, Orestes)

From: Goethe’s Iphigenia in Tauris (transl. by Anna Swanwick)



Premise:
Iphigenia.

The eldest,—he whom madness lately seiz'd,

And who is now recover'd,—is Orestes,

My brother, and the other Pylades,

His early friend and faithful confidant.

Entailment Task Example

Proposition:

“Iphigenia and Orestes are siblings”

From: Goethe’s Iphigenia in Tauris (transl. by Anna Swanwick)



Experiments

3 Models:
● Llama 2 (Touvron et al. 2023)
● Platypus 2 (Lee et al. 2023)
● GPT-4 (OpenAi 2023)

● Specific prompt templates per model

Experimental Setups:
● Different model sizes (7B + 13B)
● Different context window size
● w/ + w/o character names
● Zero- and few-shot setups

Category Count

parent-of 29

child-of 26

siblings 23

spouses 11

Total 89

● Annotations filtered for most 
frequent categories:



Prompt Examples
Classification Experiment: Llama 2 (zero shot w/o character)

<s>[INST]
What kind of family relationship is conveyed in the following German {drama_snippet}?

Choose one of "parent_of", "child_of", "siblings", "spouses".
JUST name the label and nothing else!
Family relation:
[/INST]



Prompt Examples
Classification Experiment: Llama 2 (few shot w/ character)

<s>[INST]
What kind of family relationship between {person_1} and {person_2} is conveyed in the following
German {drama_snippet}?

Choose one of the following labels:
A: "child_of"
B: "parent_of"
C: "siblings"
D: "spouses".
JUST name the label and nothing else!
Family relation:
[/INST]



Entailment Experiment: Llama 2

<s>[INST]
Consider the following two texts:

1. German text: {text}

2. {proposition}

Can you determine whether the second proposition {proposition} is entailed by the German text
{text}?

Please provide your answer in the form of a logical statement:
a.) Yes, the proposition is entailed by the given text.
b.) No, the proposition is not entailed by the given text.

Your answer:
[/INST]

Prompt Examples



Results



Discussion

Striking features of our hands-on experience:
● The major influence that prompt design has on output (even at punctuation level)

  
Our Hypothesis:
● Llama 2 not able to make connection between implicit knowledge of family 

relations and propositions
○ Prompt: “Does ‘Peter is taller than John’ imply that ‘John is smaller than 

Peter’?”
Llama 2: “To entail the latter proposition, the text would need to explicitly 
state that John is smaller than Peter”



Consequences

Key takeaways:
● An unreflected and generic out-of-the-box use of ICL in CLS not recommended
● Natural language output of LLMs can be seen as regression compared to structured, 

symbolic output
● Recommendation:

○ Carry out small experiments to check whether the concepts relevant to a particular CLS 
question are latently represented in the label space of the selected LLM!

○ If not so: use a pretrained PLM and fine tune it!
○ Find way to map output of LLM to structured output



Future Work

● Alternative Prompt Engineering + Tuning
○ PEFT (Parameter Efficient Fine Tuning)

■ We already performed some preliminary experiments but need to look into it further
● Larger set of experiments

○ Different tasks
○ Different models
○ Different prompting methods
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